A huge energy storage deal raises major doubts

Posted on

A Japanese manufacturer of gas turbines and a US owner of salt caverns have teamed up in an effort to develop what would be one of the world’s largest energy storage projects, relying on hydrogen and compressed air stored deep underground.

The doubts: Some energy observers raised questions about the project’s viability, given the economics of these technologies today, neither of which are in wide use as a grid storage option. It was also conspicuous that the announcement didn’t identify customers, or sources of public or private financing, stating only that “additional strategic and financial partners will be invited to participate” in the weeks and months to come.

The details: The one gigawatt Advanced Clean Energy Storage project, slated to be built in Millard County, Utah, would rely on some combination of four different technologies, including hydrogen, compressed air, flow batteries and a certain type of fuel cell.

Mitsubishi Hitachi Power Systems of Tokyo has developed a gas turbine technology that generates electricity from a mixture of natural gas and hydrogen, and is working on ones that run completely on hydrogen, according to the announcement. Its partner on the project, Magnum Development, operates salt mines in the western US that store natural gas liquids such as propane and butane. But it’s been exploring ways to use the caverns to store hydrogen, or energy in the form of compressed air.

ALSO READ :  Technology trends redefine businesses­­—Accenture - Manila Standard

The longer-term promise: Finding ways to add vast amounts of cheap energy storage to electricity grids is crucial for enabling clean but erratic renewable sources like wind and solar to produce a growing share of total generation. But storage is limited today by the high prices and limited duration of batteries, and geological and environmental constraints on cheaper options like pumped hydroelectric.

A growing number of researchers do believe hydrogen could eventually play an important role as a grid-scale energy storage option. The hope is that cheap surplus renewable electricity can be used to drive an “electrolysis” process that splits water into oxygen and hydrogen. But currently, electrolyzers are quite expensive and hydrogen can be difficult to transport, among other challenges.

Excess solar or wind generation could also be used to compress air in underground caverns. It can, in turn, be released as needed to generate electricity. Only a handful of such operations have been developed, as they’re capital intensive projects that can only be built where empty caverns with the right sort of geology exist.

The need for such tools are likely to become more pressing –  and the economics more promising – as renewables levels rise and clean energy mandates become more stringent.

ALSO READ :  Huawei says its Android OS replacement launch date is still undecided [Updated]

Track record: Magnum was also a partner on an $8 billion project proposed in 2014 to send Wyoming wind generation to California, relying on Utah salt cavern storage along the way.  But that project is “on hold,” as it hasn’t secured a customer, according to partner Duke American Transmission’s website.

Source link

Recommended for you